a2 United States Patent

US009130997B2

(10) Patent No.: US 9,130,997 B2

Stein et al. 45) Date of Patent: *Sep. 8, 2015
(54) UPDATING SYSTEM BEHAVIOR (56) References Cited
DYNAMICALLY USING FEATURE
EXPRESSIONS AND FEATURE LOOPS U.S. PATENT DOCUMENTS
. . 2005/0256947 Al  11/2005 Devarakonda et al.
(71) Applicant: Facebook, Inc., Menlo Park, CA (US) 5007/0226796 Al 92007 Gilbert of al.
(72) Inventors: Christopher Alexander Stein, San OTHER PUBLICATIONS
Francisco, CA (US); Karan Mangla,
Mountain View, CA (US); Zhimin Chen, Blanzieri, E., et al., “A survey of learning-based techniques of email
Menlo Park, CA (US); Erdong Chen, spam filtering,” Artif. Intell. Rev. 2008, vol. 29, pp. 63-92.
Fremont, CA (US) Carreras, X., et al., “Boosting Trees for Anti-Spam Email Filtering,”
’ Proceedings of RANLP-01, 4" International Conference on Recent
(73) Assignee: Facebook, Inc., Menlo Park, CA (US) Advances in Natural Language Processing, 2001, Tzigov Chark, BG,
’ » ’ eight pages.
® c . . . . Dalvi, N, et al., “Adversarial Classification,” in Proceedings of the
(*)  Notice: SubJeCt. to any (?;S(Cilalmeé’. the Iiermdoftl;lg 10" ACM SIGKDD International Conference on Knowledge Discov-
patent 1s extended or adjusted under ery and Data Mining, KDD *04, ACM, 2004, pp. 99-108, New York,
U.S.C. 154(b) by O days. NY.
This patent is subject to a terminal dis- (Continued)
claimer.
Primary Examiner — Chau Le
1. No.: ”
(21)  Appl. No.: 14/296,435 (74) Attorney, Agent, or Firm — Fenwick & West LLP
(22) Filed: Jun. 4,2014 (57) ABSTRACT
(65) Prior Publication Data Behavior of an online system is modified dynamically using
feature expressions and feature loops. A feature expression
US 2014/0289795 Al Sep. 25,2014 can be expressed as a combination of other features or feature
p
Related U.S. Application Data expressions, thereby allowing specification of complex fea-
] ) o tures. The sets of feature expressions and policies of an online
(63) Continuation of application No. 13/311,489, filed on  gystem can be modified while the online system is running.
Dec. 5, 2011, now Pat. No. 8,799,987. Feature loops aggregate values of a feature expression across
a plurality of actions, for example, number of occurrences of
p y p
(51) Int.CL an event over a time interval. The online system evaluates a
HO4L 29/06 (2006.01) set of feature expressions in response to actions performed by
GOG6F 21/56 (2013.01) users. Feature expressions are used to specify policies that
(52) US.CL determine how the online system reacts to certain types of
CPC v HO4L 63/20 (2013.01); GO6F 21/56 user actions. The ability to dynamically modify the feature
(2013.01) expressions and policies of the online system allows the
(58) Field of Classification Search online system to adapt to attacks by malicious users in a
CPC ... HO4L 63/20; GOGF 21/00; GOGF 21/50; timely manner.
GOGF 21/56

See application file for complete search history.

20 Claims, 4 Drawing Sheets

Receive information describing a user

action

l

Evaluate a set of feature expressions

1

J

Determine if any policy is applicable to
the user action

320

<

B0 " No

|

.
.

Policy .

~. applicabis -~
< -

Respond to the user action based on
applicable policies

’ \I/Yfes
340




US 9,130,997 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Hao, S., et al., “Detecting Spammers with SNARE: Spatio-temporal
Network-level Automatic Reputation Engine,” USENIX Association,
18" USENIX Security Symposium, 2009, pp. 101-117.

Heymann, P, et al., “Fighting Spam on Social Web Sites—A Survey
of Approaches and Future Challenges,” IEEE Internet Computing,
2007, pp. 36-45, vol. 11, No. 6.

Lowd, D., et al., “Adversarial Learning,” in Proceedings of the 11"
ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining, KDD 05, ACM, pp. 641-647, 2005, New York, NY.

Ma, J., et al.,, “Identifying Suspicious URLs: An Application of
Large-Scale Online Learning,” Proceedings of the 26” International
Conference on Machine Learning, 2009, pp. 681-688, Montreal,
Canada.

Thomas, K., et al., “The Koobface Botnet and the Rise of Social
Malware,” in IEEE Proceedings of the 5" International Conference
on Malicious and Unwanted Sofiware, 2010, pp. 63-70, Champaign,
IL.

United States Office Action, U.S. Appl. No. 13/311,489, Dec. 4,
2013, thirteen pages.

Von Ahn, L., et al., “CAPTCHA: Using Hard AI Problems for Secu-
rity,” EUROCRYPT, LNCS 2656, 2003, pp. 294-311.

Whittaker, C., et al., “Large-Scale Automatic Classification of Phish-
ing Pages,” in NDSS, 2010, fourteen pages.



US 9,130,997 B2

Sheet 1 of 4

Sep. 8, 2015

U.S. Patent

I 'Old
T L
auwbBuz Aoljod G2 asuodsay
Ed 30¢L
2I0}S
T | A UOIIBLLLIOU|
L \\\\\\\\\.\\
" _ l/rM o mu“m _ ‘\.‘]l/
] qozt
| 0L m 21018
" opeixg UOIIBLLIOU]
i sinesd !
! m aget <.
| | Ry
/\.\MHN/// \i\}/
~ —_—
A B0ZT
BGCT 2I0}S
LONRLLLIOU]
\\llll/l
//I‘\\

00T welsAs auiuo

SUOIoR J9s()



U.S. Patent Sep. 8, 2015 Sheet 2 of 4 US 9,130,997 B2

Client Client Client
Deavice Device Device
2084 205b 2080
/!///
210
// Onting System 100
Feature Memory
Web Server Extractor acte
230 noe Cache User Profile
248 220 Store 250
Feature -
Action Log Action Logger Expression Feature
265 215 Evaluator Expression
238 Store 244
Policy Engine FeEaiuz“e %OO’O Connection Data
245 vanuator Store warehouse |
I 255 280 280
Classifiers Feature
270 store
T 278




U.S. Patent Sep. 8, 2015 Sheet 3 of 4
200
—ge Receive information describing a user
action
k
310

Evaluaie a sel of fealure expressions

¥

2320
Determine if any policy is applicable to
the user action

l

/"ﬁ‘ .
e ~
/ o ~
B0

US 9,130,997 B2

< Policy 4
N . -
~_applicable -
N 7
N 7

~N. 7
N7

i Yes

340
Respond to the user action based on
applicable policies




U.S. Patent

Sep. 8, 2015 Sheet 4 of 4

400
Evaluate set of feature expression in
response to user actions

&

410
Receive a request to add a new
feature expression

¥

420
YValidate the new expression by
parsing and type cheacking

i

AN
PN
- “
e N

/,/ - m \k\‘\; No

< Valid

US 9,130,997 B2

N . ) e
- expression? -
. S

N e
. s

l Yes

440
Add new fealure expression o the
sel of fealure expressions




US 9,130,997 B2

1
UPDATING SYSTEM BEHAVIOR
DYNAMICALLY USING FEATURE
EXPRESSIONS AND FEATURE LOOPS

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. application Ser.
No. 13/311,489, filed Dec. 5, 2011, which is incorporated by
reference in its entirety.

BACKGROUND

This invention relates to expressions based on features of
users and user actions of an online system for performing
dynamic updates to the behavior of the online system.

Online systems often get attacked by malicious users that
cause harm to the online system or to the users of the online
system. A malicious user can cause harm by gaining unau-
thorized access to user accounts, stealing information from
the online system, sending unsolicited information to the
users, and so on. For example, a malicious user may launch a
phishing attack to gain access to a user’s account. Once a
user’s account is compromised, the compromised account
can be used to launch other attacks. Malicious users can send
messages to users that cause malware to be installed on the
user’s device. Malware installed on a user’s device can cause
messages to be sent to other users that cause the malware to
replicate itself.

There are other types of user actions that cause harm that
may be less severe than the examples given above. Users may
use the online system in ways that are discouraged by the
online system. For example, an online system may recom-
mend each user to have one user account. However, users may
create multiple user accounts for various reasons, for
example, to use each account for a particular purpose. These
additional accounts created by a user may provide false infor-
mation to the online system. For example, a social networking
system may use the number of connections of a user as a
metric to make certain decisions regarding the user, including
the newsfeed sent to the user, direct advertisements to the
user, and so on. Fake user accounts may increase the number
of'connections of the user thereby providing false information
to the social networking system causing it to make incorrect
decisions.

Online systems need to take actions to protect the online
system itself and its users from these attacks. Online systems
such as social networking systems store a social graph that
describes how users are connected to each other. The social
graph can be exploited by malicious users to rapidly propa-
gate harm to the online system or the users of the online
system. For example, users connected to each other via a
social networking system trust each other and are more likely
to respond to messages from a connection. Therefore, a user
is more likely to interact with a malicious message received
from a connection whose account has been compromised. A
user’s interaction with the malicious message can propagate
the malicious message to other connections of the user. Any
delay in responding to an attack on the social networking
system can result in the harm being propagated rapidly to a
very large number of users. Therefore, online systems, for
example, social networking systems must respond to these
attacks within a short period after the attack is launched in
order to limit the damage caused by the attack. Furthermore,
the attackers of a system may constantly change their strate-
gies to avoid being identified. As a result, the online system
must continuously adapt to changes of the attackers. Conven-

10

20

25

30

35

40

45

2

tional techniques that respond to attacks after a significant
delay can result in the harm being propagated to a large
number of users.

SUMMARY

Embodiments of the invention allow the behavior of an
online system to be dynamically modified using feature
expressions and feature loops. The behavior of an online
system is specified using policies that determine the response
of the online system to user actions. A policy is specified in
terms of a precondition and actions to be executed when the
precondition is satisfied. A precondition is specified in terms
of feature expressions. A feature expression can be specified
as a value describing an entity represented in the online sys-
tem, for example, a user or a user action. The feature expres-
sion can also be specified by composing other feature expres-
sions using operators. The online system maintains a set of
feature expressions and a set of policies. The online system
evaluates a set of feature expressions in response to user
actions. The feature expressions evaluated are used to deter-
mine whether any preconditions of policies are satisfied. If a
precondition of apolicy is satisfied, the actions corresponding
to the policy are executed in response to the user action.

In an embodiment, the sets of feature expressions and
policies can be modified while the online system is running
without shutting down the system. The online system evalu-
ates the modified set of feature expressions or policies for
subsequent user actions. In an embodiment, the online system
is a social networking system and evaluation of a feature
expression may comprise identifying other users connected
to a user and evaluating a sub-expression for each user. In an
embodiment, the online system maintains feature loops that
aggregate values of a feature expression across a plurality of
actions. For example, a feature loop can aggregate the number
of'occurrences of a type of user action during a time interval.

The features and advantages described in the specification
are not all inclusive and, in particular, many additional fea-
tures and advantages will be apparent to one of ordinary skill
in the art in view of the drawings, specification, and claims.
Moreover, it should be noted that the language used in the
specification has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of the system environment illustrating
an online system that is dynamically updated in response to
attacks from malicious users, in accordance with an embodi-
ment of the invention.

FIG. 2 is a high level block diagram illustrating the system
architecture of an online system that can be updated using
feature expressions and feature loops in order to dynamically
modify the behavior of the online system, in accordance with
an embodiment of the invention.

FIG. 3 is a flowchart of a process for evaluating policies in
response to user actions to determine the response of the
online system to a particular type of user action, in accor-
dance with one embodiment of the invention.

FIG. 4 is a flowchart of a process for dynamically modify-
ing the behavior of an online system by modifying the set of
feature expressions of the online system, in accordance with
one embodiment of the invention.

The figures depict various embodiments of the present
invention for purposes of illustration only. One skilled in the
art will readily recognize from the following discussion that



US 9,130,997 B2

3

alternative embodiments of the structures and methods illus-
trated herein may be employed without departing from the
principles of the invention described herein.

DETAILED DESCRIPTION

An online system is dynamically updated to change the
behavior of the system that defines how the online system
responds to user actions. For example, certain user actions are
intended to cause harm to the online system or to the users of
the online system. The online system analyzes information
available in the online system to identify patterns that char-
acterize these harmful user actions. Information available in
the online system that characterizes user actions is repre-
sented as features. For example, a feature may indicate
whether a message sent by a user to another includes uniform
resource locators (URLs). A feature may be determined by
observing a value available in the online system, for example,
size of a message. The value may be generated by classifiers
trained using machine learning techniques. A feature can also
be determined by combining information obtained from mul-
tiple sources in the online system, for example, number of
users connected via a social networking system with both the
sender and recipient of a message.

Online system allows features to be specified using feature
expressions that can combine simpler features using opera-
tors. Features can be nested using feature expressions to build
complex features. New features can be dynamically added to
the online system while the online system is running without
shutting down the system. The online system also allows
specifying feature loops that aggregate feature expressions
over multiple user actions. For example, a feature loop may
correspond to a number of times a particular pattern of fea-
tures is observed during the past hour. The value of the feature
loop is evaluated an updated periodically.

The online system implements policies determining how
the online system reacts if user actions matching certain pat-
terns are identified. Policies comprise preconditions that are
specified using feature expressions or feature loops. Policies
also comprise a set of actions to be performed if the precon-
dition of the policy is satisfied. For example, a precondition of
a policy may be satisfied if a user sends out more than a
threshold number of messages in an hour. Furthermore, if the
precondition of the policy is satisfied, the online system may
perform certain actions specified by the policy, for example,
sending a warning message to the user or temporarily dis-
abling the user account.

FIG. 1 is a diagram of the system environment illustrating
an online system that responds to attacks, in accordance with
an embodiment of the invention. The online system 100 can
have multiple users 110 that perform actions 115 using the
online systems. For example, if the online system 100 is a
social networking system, the users 110 can interact with
other users by sending messages, posting content including
pictures, audio, or video content, commenting on content
posted by other users and so on. FIG. 1 and the other figures
use like reference numerals to identify like elements. A letter
after a reference numeral, such as “1204,” indicates that the
text refers specifically to the element having that particular
reference numeral. A reference numeral in the text without a
following letter, such as “120.” refers to any or all of the
elements in the figures bearing that reference numeral (e.g.
“120” in the text refers to reference numerals “1204” and/or
“1205” in the figures).

The online system 100 analyzes these actions to determine
whether any actions are indicative of harmful activity by the
user. If the online system 100 identifies actions indicative of

20

25

35

40

45

50

55

4

harmful activity, the online system responds 125 to these
actions to prevent the harm. For example, several users may
create accounts with the online system 100. However, some
user accounts created may be fake accounts corresponding to
multiple accounts created by the same user. The online sys-
tem 100 analyzes the accounts to determine whether an
account created is a fake account. If the online system 100
identifies an account as a fake account, the online system 100
responds 125, for example, by disabling the account or by
sending a message to user associated with the account to
consolidate the user’s multiple accounts. As another example,
online system 100 analyzes messages sent by users to other
users determine whether a user is sending spam messages. If
a user is identified as sending spam, the online system can
respond in one of various ways, for example, by sending a
message to the user to stop sending spam, by deleting the
messages sent by the user, by disabling the user’s account, or
by directing the spam messages to a spam folder.

The online system 100 analyzes information available in
various information stores 120 of the online system 100 to
determine the response 125 to a particular user action. Each
action 115 performed by a users 110 can cause information
associated with the action to be stored in one or more infor-
mation stores. For example, the action 115 may be recorded in
an event log, the action may cause analytic reports to be
changed, or the action may trigger other actions in various
modules of the online system 100. Furthermore, the online
system 100 may analyze actions using information that may
not be directly related to the particular actions 115. For
example, the online system 100 may analyze past actions of
the user, interactions of the user with other users, information
describing the user stored in a user profile, social information
describing the user, and the like.

The feature extractor 130 analyzes the information stored
in various information stores 120 to identify various features
describing the user and the actions. The features extracted 135
comprise information that is available in the information
stores 120 as well as information derived from this informa-
tion. The feature extractor 130 provides 145 the extracted
features to the policy engine 150. The policy engine 150
identifies specific policies available to respond to an action or
user identified as harmful. The policies are selected based on
particular patterns identified in the features that are indicative
of a harm caused by a user or the user’s action. A policy
specifies a response 125 to be taken in view of a harmful
situation, for example, a particular harmful action.

System Architecture

FIG. 2 is a high level block diagram illustrating a system
environment suitable for associating cameras with users, in
accordance with an embodiment of the invention. The system
environment comprises one or more client devices 205, an
online system 100, and a network 210. In alternative configu-
rations, different and/or additional modules can be included
in the system.

The client devices 205 comprise one or more computing
devices that can receive user input and can transmit and
receive data via the network 210. In one embodiment, the
client device 205 is a conventional computer system execut-
ing, for example, a Microsoft Windows-compatible operating
system (OS), Apple OS X, and/or a Linux distribution. In
another embodiment, the client device 205 can be a device
having computer functionality, such as a personal digital
assistant (PDA), mobile telephone, video game system, etc.
The client device 205 is configured to communicate via net-
work 210. The client device 205 can execute an application,
for example, a browser application that allows a user of the
client device 205 to interact with the online system 100.



US 9,130,997 B2

5

In one embodiment, the network 210 uses standard com-
munications technologies and/or protocols. Thus, the net-
work 210 can include links using technologies such as Eth-
ernet, 802.11, worldwide interoperability for microwave
access (WIMAX), 3G, digital subscriber line (DSL), etc.
Similarly, the networking protocols used on the network 210
can include multiprotocol label switching (MPLS), the trans-
mission control protocol/Internet protocol (TCP/IP), the User
Datagram Protocol (UDP), the hypertext transport protocol
(HTTP), the simple mail transfer protocol (SMTP), the file
transfer protocol (FTP), etc. The data exchanged over the
network 210 can be represented using technologies and/or
formats including the hypertext markup language (HTML),
the extensible markup language (XML), etc.

The online system 100 includes a web server 230, a feature
extractor 225, an action logger 215, a user profile store 250, a
connection store 260, an action log 265, a feature expression
evaluator 235, a feature loop evaluator 255, a feature expres-
sion store 240, a data warehouse 280, classifiers 270, and a
policy engine 245. In other embodiments, the online system
100 may include additional, fewer, or different modules for
various applications. Conventional components such as net-
work interfaces, security mechanisms, load balancers,
failover servers, management and network operations con-
soles, and the like are not shown so as to not obscure the
details of the system.

The web server 230 links the online system 100 via the
network 210 to one or more client devices 205; the web server
230 serves web pages, as well as other web-related content,
such as Java, Flash, XML, and so forth. The web server 230
may provide the functionality of receiving and routing mes-
sages between the online system 100 and the client devices
205, for example, instant messages, queued messages (e.g.,
email), text and SMS (short message service) messages, or
messages sent using any other suitable messaging technique.

The action logger 215 is capable of receiving communica-
tions from the web server 230 about user actions on and/or off
the online system 100. The action logger 215 populates the
action log 265 with information about user actions to track
them. Such actions may include, for example, sending a mes-
sage to other users, uploading an image, reading messages
received from other users, viewing content associated with
other users, among others.

The user account information and other related informa-
tion for a user is stored in the user profile store 250. The user
profile information stored in user profile store 250 describes
the users of the online system 100, including biographic,
demographic, and other types of descriptive information,
such as work experience, educational history, gender, hobbies
or preferences, location, and the like.

In some embodiments, the online system 100 is a social
networking system that offers its users the ability to commu-
nicate and interact with other users of the social networking
system. Users join the social networking system and then add
connections to a number of other users of the social network-
ing system to whom they desire to be connected. The connec-
tion store 260 stores data describing the connections between
different users of the social networking system. The connec-
tions are defined by users, allowing users to specify their
relationships with other users. For example, the connections
allow users to generate relationships with other users that
parallel the users’ real-life relationships, such as friends, co-
workers, partners, and so forth.

The feature extractor 225 extracts features by accessing
information from various information stores 120 in the online
system 100. Examples of information stores 120 include user
profile store 250, connection store 260, data warehouse 280,

30

40

45

50

55

6

action log 265 and the like. For example, the feature extractor
225 may continuously monitor the last part of the action log
265 (also called the tail of the action log 265) to determine
various actions taking place in the online system 100. If the
tail of the action log 265 is determined to match certain
pattern, the feature extractor analyzes the action log 265 to
identify one or more features. For example, the tail of the
action log may indicate that a user sent a message to another
user. The feature extractor may analyze the tail of the action
log 265 to analyze the content of the message, for example, to
determine whether any URLs were included in the message.

A feature may describe various entities represented in the
online system 100, for example, users, messages, connections
of a user, and so on. Examples of features of a message
include, the number of URLs mentioned in a message or the
communication channel used to send the message indicating
whether the message was sent via an email, as an instant
message, a wall post, a new feed or any other channel. Other
features of the message include information describing the
sender and the recipient, the number of connections between
the sender and the recipient, an internet protocol (IP) address
of' a machine used to send the message, number of users to
whom the message was sent, and so on. A feature of a user
may comprise information described in the user’s profile, for
example, age of the user, gender of the user, income, ethnicity,
number of connections of the user, and so on.

In an embodiment, feature values are determined using
classifiers 270 that use machine learning techniques.
Examples of machine learning techniques used include ran-
dom forests, logistic regressions, boosting algorithms, and
other supervised learning algorithms. The classifiers are
trained using training data set obtained from past user actions,
for example, historical data stored in action log 265. The
features determined by classifiers may be stored in feature
store 275 and then utilized by feature expression evaluator
235, feature loop evaluator 255, and other modules.

The data warehouse 280 stores reports describing informa-
tion available in the online system 100 aggregated based on
different criteria. For example a report may describe mes-
sages with a particular feature received over a given time
interval. A report may describe all users that sent more than a
threshold number of messages over a given time interval. The
reports in the data warehouse 280 are periodically refreshed,
thereby updating the information stored in the reports. For
example, the reports in the data warehouse 280 may be
refreshed daily at a predetermined time. In online systems
100 with large number of users and a large number of inter-
actions between users, the amount of information processed
to refresh a data warehouse 280 can be very large. Therefore,
refreshing a data warehouse 280 can be a computation inten-
sive operation that can take significant time to execute, for
examples, several hours.

The feature expression store 240 stores feature expressions
provided by a privileged user, for example, a system admin-
istrator. A feature expression may combine multiple sub-
expressions using operators. A sub-expression can be a fea-
ture corresponding to a value obtained from an information
store. A sub-expression can also be another feature expres-
sion. Examples of operators include mathematical operators
including addition, subtraction, aggregation, logical opera-
tors including comparison, boolean operations, as well as
user defined operators. For example, in a social networking
system, an operator may take information identifying a user
as input and determine the number of connections of the user.
Alternatively an operator may take information identifying
two users and input and return the number of users that are



US 9,130,997 B2

7

connected to both the users via the social networking system.
A feature can be specified as a feature expression.

The feature expression evaluator 235 evaluates the values
of various feature expressions and determines their values. In
an embodiment, the feature expression evaluator 235 evalu-
ates feature expression in response to an action performed by
the users of the online system. For example, a set of feature
expressions may be evaluated when a user sends a message to
another user. The feature expression store 240 stores the
associations between types of actions and feature expressions
to be evaluated in response to a user action of a given type.
The feature expression evaluator 235 may be automatically
invoked periodically at a predetermined time interval or
invoked in response to particular events that occur in the
online system, for example, particular user actions. Accord-
ingly, the feature expression evaluator 235 is continuously
operating while the online system 100 is operational, i.e., the
online system 100 is receiving and processing user requests.

In an embodiment, new expressions can be added to the
online system 100, deleted from the online system 100, or
modified while the online system 100 is running. In other
words, the online system 100 does not have to be shut down in
order to make modifications to the set of feature expressions
in the online system 100. Typically the changes to feature
expressions are performed by a privileged user of the online
system 100, for example, a system administrator.

A new feature expression provided to the online system
100 may be validated by the feature expression evaluator 235
to make sure that there are no errors in the specification of the
new feature expression, for example syntactic errors. The
feature expression evaluator 235 may perform parsing and
type checking of the new expression to validate the expres-
sion. After validation, the new feature expression is stored in
the feature expression store 240 and evaluated for subsequent
actions. A new feature expression may be specified in textual
form using a user interface from a client device 205. A new
feature expression may also be uploaded in the online system
100 as a script file.

A system administrator can also delete a feature expression
from the feature expression store 240 or modify a feature
expression available in the feature expression store 240. Once
a change to the set of feature expressions of the feature
expression store 240 is completed, the updated set is used
while evaluating the features expressions for responding to
subsequent user actions.

The policy engine 245 stores and evaluates policies deter-
mining how the online system 100 reacts to particular types of
user actions. For example, a policy may determine that a
message that results in a particular feature expression evalu-
ating to true indicates that the message is a spam. Accord-
ingly, the policy may indicate that the message should be
marked as spam, and particular action be taken against the
sender. The specification ofa policy comprises a precondition
specified as a feature expression. A policy may specity that if
a feature expression evaluates to a particular value orto one of
a set of predetermined values, the precondition is satisfied. A
policy is determined to be applicable to an action if the pre-
condition is satisfied for the policy when the action is per-
formed. The policy also specifies one or more actions to be
executed when the precondition of the policy is satisfied.
Similar to feature expressions, policies can also be added to
the online system 100, deleted from the online system 100, or
modified in the online system 100 while the online system
100 is running without shutting down the system in order to
upgrade the system.

The ability to dynamically make changes to feature expres-
sions and policies of the online system 100 allows a system

10

15

20

25

30

35

40

45

50

55

60

65

8

administrator to experiment with new policies in response to
changes in external input. For example, certain malicious
users may attack the online system 100 using various strate-
gies. The behavior of the online system 100 is changed with
respect to the malicious users by enforcing particular policies
without shutting down the system. If a change to the policies
is determined to be effective in responding to the attack, the
change is retained or else the change can be backtracked. This
is an ongoing process since the malicious users typically
modify their strategies again to continue to attack the online
system 100 and the online system 100 is subsequently
updated to respond to the new attack.

The online system 100 also allows features to be specified
as feature loops. A feature loop aggregates feature expression
values across multiple actions. In an embodiment, the feature
loops are stored in the feature expression store 240. The
feature loop evaluator 255 evaluates the feature loops stored
in the feature expression store 240 to determine their corre-
sponding values. The feature loop evaluator 255 may main-
tain a counter in order to evaluate a feature loop. For example,
a feature loop may correspond to a number of messages that
were broadcast to more than a predetermined number ofusers
within the past hours. The feature loop evaluator 255 may
store a counter indicating this value and update the counter
value periodically.

In some embodiments, the online system 100 may be a
distributed system comprising multiple processors. For
example, actions performed by different users may be pro-
cessed by different processors. In an embodiment, the online
system 100 includes a memory cache 220 to store values
related to feature expressions and feature loops for fast
access. For example, various counters related to feature loops
may be stored in the memory cache 220. In an embodiment, a
single processor maintains a value of a counter. Other proces-
sors that identify user actions that cause changes to the
counter communicate with the processor storing the counter
value in order to update the value. The memory cache 220
may implement various synchronization techniques to avoid
race conditions between multiple processors attempting to
update the counter values at the same time.

FIG. 3 is a flowchart of a process for evaluating policies in
response to user actions to determine whether the online
system should respond to a particular type of user action, in
accordance with one embodiment of the invention. The online
system 100 receives 300 information describing an action
performed by a user of the online system 100. For example, a
user may send a message to one or more users of the online
system or interact with other users of the online system using
a channel provided by the online system 100. The feature
expression evaluator 235 evaluates a set of feature expres-
sions in response to the user action. The policy engine 245
determines whether any policy is applicable to the user
action. The policy engine 245 evaluates preconditions of the
policies specified as feature expressions. If a precondition of
a policy is satisfied, the policy is determined 330 to be appli-
cable to the user action. If a policy is determined 330 to be
applicable to the user action, the online system 100 performs
340 actions specified by the applicable policies. The online
system 100 continues receiving 300 information describing
subsequent actions and processing them.

The feature expressions and policies of the online system
100 can be dynamically updated. Updating feature expres-
sions and policies includes adding, deleting, or modifying
feature expressions or policies. FIG. 4 is a flowchart of a
process for dynamically modifying the behavior of an online
system by modifying the sets of feature expressions of the
online system, in accordance with one embodiment of the



US 9,130,997 B2

9

invention. The online system 100 continuously evaluates 400
feature expressions in response to user actions. In an embodi-
ment, the step 400 corresponds to the process illustrated in
FIG. 3. While the online system responds to user actions, the
set of feature expression can be modified, for example, by
adding a new feature expression. The online system 100
accordingly receives 410 a request to add the new feature
expression. The online system 100 validates 420 the new
feature expression by parsing the specification of the feature
expression and performing type checking. If the new feature
expression is determined 430 to have invalid specification, the
online system 100 reports the error and may discard the new
feature expression. On the other hand, if the new feature
expression is determined 430 to have valid specification, the
online system 100 adds the new feature expression to the set
of feature expressions.

In an embodiment, the steps 410, 420, 430, 440 are per-
formed concurrently with the step 400. For example, the steps
may be performed in parallel by different processors or
executed concurrently by the same processor. As a result, the
online system 100 is continuously operational while the fea-
ture expressions and policies of the online system 100 are
updated. Once the update to the feature expressions or poli-
cies is complete, the online system 100 responds to the user
actions by evaluating 400 the updated set of feature expres-
sions or policies.

Examples of Feature Expressions

Feature expressions can be used to determine a variety of
values used for implementing policies of the online system
100. The following feature expression (1) determines the
maximum domain spam scores of all domains mentioned in a
message.

1)
(Text))

The feature expression takes the text of the message as
input, called “Text”” The function “Max” determines the
maximum of a set of values and the function “Map” applies
the given function “DomainSpamScore” to a list of values.
The list of values is returned by the function “ExtractDo-
mains” that identifies all domains in the text of a message.
Accordingly, the feature expression (1) determines the maxi-
mum value of the DomainSpamScore evaluated over all
domains extracted from the text of a message.

The following feature (2) determines the number of pages
that are liked by both sender and receiver of a message.

(2) Count(Intersect(LikedPages(Sender), LikedPages(Re-
ceiver)))

The function “LikedPages” returns a set of pages thatauser
liked. The function “Intersect” determines the intersection of
two sets and the function “Count” returns the number of
elements of a set. Accordingly, the feature expression (2)
determines the sets of pages liked by the sender and receiver
of' a message and determines the number of elements in the
intersection of the two sets.

The following feature (3) determines the number of users
that are connected to both sender and receiver of a message.

(3) Count(Intersect(Connections(Sender), Connections
(Receiver)))

The function “Connections” determines the set of users
that are connected to a given user via a social networking
system. The feature expression determines the sets of con-
nections of the sender and receiver of a message and deter-
mines the count of the intersection of the two sets.

Max(Map(DomainSpamScore,  ExtractDomains

5

20

25

30

40

45

50

55

60

10

The following example shows a policy that determines
whether a message sent using a channel of the online system
100 is a spam and takes appropriate action.

(4) And(IsChannel(“messages™),

And(GreaterThan(Count(ExtractURLs(Text)), 0),

And(
GreaterThan(ClassifyScore(“fakers”,
157), 0.41).

“2011-03-

GreaterThan(ClassifyScore(“bad__urls”, “2011-03-14"), 0.74)
=> SpamFolder

)

The function “ClassifierScore” computes a particular score
value for a message. The function “GreaterThan” determines
if a first input is greater than a second input. The function
“And” computes a boolean “and” of two logical input values.
The function “ExtractURLs” extracts URLs from the text of
a message. The function “IsChannel” determines whether a
message belongs to a particular channel. Accordingly, the
feature expression in the policy (4) determines whether the
text of a message includes URLs. If the text of the message
includes at least one URL, particular score values including
“fakers” and “bad_urls” are determined for the message. If
the score values are greater than respective thresholds and the
message is sent using the channel “messages” the message is
identified as a spam message. This feature expression is the
precondition of the policy. If this precondition is satisfied for
a message, the message is determined to be spam and an
action “SpamFolder” is executed for the message. The action
“SpamFolder” sends the message to the spam folder.
Feature Loops

Feature loops allow aggregation of information available
in the online system 100, for example, across multiple user
actions. The result of feature loops can also be used as fea-
tures. The feature loops can also incorporate user feedback,
data from crawlers (e.g., information about destination of a
URL after the URL is crawled), and query data from data
warehouse 280. The feature loops can be considered as
equivalent of classifiers with a shared memory about past
observations and classifications. The ability to aggregate
information across large data sets and across different types
of information sources allows specification of complex fea-
tures. However, determination of these feature values
requires longer execution time, i.e., higher latency.

In an embodiment, the feature loops are categorized based
on the latency of feature computation. For example, feature
loops are categorized as inner loops, middle loops, and outer
loops as described herein. The inner loops comprise simple
computation that requires very low latency, the middle loops
comprise more complex computation that require longer
latency compared to inner loops, and outer loops comprise
computations that require even longer latency.

An inner loop comprises low-latency features that require
simple computation, for example, incrementing or decre-
menting counters. An inner loop provides a mechanism to
count values of one or more features. In an embodiment, a
counter stores the number of occurrences of combination of
values of some features over a predetermined period of time.
For example, an inner loop may determine the number of
times a URL is posted using a particular channel of commu-
nication between users of the online system 100. In an
embodiment, the counter values are stored in memory cache
220. The feature loop evaluator 255 determines the value of
the inner loop by reading the counter value from the memory
cache 220, updating the counter value based on the current
information available in the online system 100, and written



US 9,130,997 B2

11

back to the memory cache 220. Computations of inner loops
may be computed in a few milliseconds, depending on the
type of hardware configuration of the online system 100. The
simplicity of inner loops allows a large number of inner loops
to be maintained.

The middle loops provide a mechanism to apply more
complex operations compared to inner loops. The latency of
middle loop computations can be a few seconds. Middle
loops can be used to determine more complex feature describ-
ing IPs and URLs related to communications between users
of'the online systems. For example, a middle loop may deter-
mine number of messages including a particular URL sent by
an IP address in a given time interval. The counters imple-
menting middle loops may also be stored in memory cache
220.

Outer loops require computations with more complex
computations with longer latency that may require minutes or
hours to compute. For example, an outer loop may determine
the unique number of users who have posted a particular URL
in a given day. To determine this feature, all posts of the given
day are analyzed and the values corresponding to them aggre-
gated. In some embodiments, determination of a value of a
outer loop may require values computed in the data ware-
house 280. Typically computation of the reports of the data
warehouse can take several hours. Therefore, the reports of
the data warehouse 280 may be refreshed one a day or once
every few days. In some embodiments, the latency of outer
loops is same as the periodic interval after which the data
warehouse 280 is refreshed.

ALTERNATIVE APPLICATIONS

The foregoing description of the embodiments of the
invention has been presented for the purpose of illustration; it
is not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Persons skilled in the relevant art can
appreciate that many modifications and variations are pos-
sible in light of the above disclosure.

Some portions of this description describe the embodi-
ments of the invention in terms of algorithms and symbolic
representations of operations on information. These algorith-
mic descriptions and representations are commonly used by
those skilled in the data processing arts to convey the sub-
stance of their work effectively to others skilled in the art.
These operations, while described functionally, computation-
ally, or logically, are understood to be implemented by com-
puter programs or equivalent electrical circuits, microcode, or
the like. Furthermore, it has also proven convenient at times,
to refer to these arrangements of operations as modules, with-
out loss of generality. The described operations and their
associated modules may be embodied in software, firmware,
hardware, or any combinations thereof.

Any of the steps, operations, or processes described herein
may be performed or implemented with one or more hard-
ware or software modules, alone or in combination with other
devices. In one embodiment, a software module is imple-
mented with a computer program product comprising a com-
puter-readable medium containing computer program code,
which can be executed by a computer processor for perform-
ing any or all of the steps, operations, or processes described.

Embodiments of the invention may also relate to an appa-
ratus for performing the operations herein. This apparatus
may be specially constructed for the required purposes, and/
or it may comprise a general-purpose computing device
selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be
stored in a tangible computer readable storage medium or any

15

25

30

35

40

45

12

type of media suitable for storing electronic instructions, and
coupled to a computer system bus. Furthermore, any comput-
ing systems referred to in the specification may include a
single processor or may be architectures employing multiple
processor designs for increased computing capability.

Finally, the language used in the specification has been
principally selected for readability and instructional pur-
poses, and it may not have been selected to delineate or
circumscribe the inventive subject matter. It is therefore
intended that the scope of the invention be limited not by this
detailed description, but rather by any claims that issue on an
application based hereon. Accordingly, the disclosure of the
embodiments of the invention is intended to be illustrative,
but not limiting, of the scope of the invention, which is set
forth in the following claims.

What is claimed is:

1. A computer-implemented method comprising:

maintaining, in an online system, a set of feature loops,

wherein a feature loop comprises an expression capable
of being processed by a computer processor to map a set
of input values to an output value, the expression evalu-
ating to a value describing one or more entities in the
online system, wherein evaluating the feature loop com-
prises aggregating values of the expression across a plu-
rality of user actions;

receiving information describing a modification to the set

of feature loops, wherein the modification to the set of
feature loops is performed while the online system is
executing;

responsive to the set of feature loops being modified, evalu-

ating feature loops of the set of modified feature loops
for a subsequent user action; and

responding to the subsequent user action based on the

values of feature loops from the set of modified feature
loops.

2. The computer-implemented method of claim 1, wherein
the modification to the set of feature loops comprises one or
more of: addition of'a new feature loop, deletion of an existing
feature loop, or update of an existing feature loop.

3. The computer-implemented method of claim 2, further
comprising:

responsive to the set of feature loops being modified, evalu-

ating feature loops of the modified set of feature loops
for subsequent user actions.

4. The computer-implemented method of claim 1, wherein
an expression associated with a feature loop is a feature
expression obtained by composing a plurality of other feature
expressions using operators, each of the plurality of other
feature expressions representing a value associated with an
entity represented in the online system.

5. The computer-implemented method of claim 1, wherein
afeature loop aggregates changes to values of the correspond-
ing expression over a time interval.

6. The computer-implemented method of claim 1, wherein
a feature loop aggregates the number of occurrences of a
particular value obtained by evaluating an expression over a
time interval.

7. The computer-implemented method of claim 1, wherein
a feature loop aggregates the number of occurrences of an
event during a time interval.

8. The computer-implemented method of claim 1, wherein
a feature loop determines a number of users that performed an
action of a particular type during a previous time interval.

9. The computer-implemented method of claim 1, wherein
a feature loop determines a number of messages in the online
system that were broadcast to more than a predefined thresh-
old number of users.



US 9,130,997 B2

13

10. The computer-implemented method of claim 1,
wherein a feature loop determines the number of times a
uniform resource locator is posted using a particular channel
of communication between users of the online system.

11. The computer-implemented method of claim 1,
wherein a feature loop determines the number of messages in
the online system that included a particular uniform resource
locator in a given time interval.

12. The computer-implemented method of claim 1,
wherein a feature loop comprises an expression that evaluates
data obtained by crawling a uniform resource locator.

13. The computer-implemented method of claim 1,
wherein a feature loop determines a unique number of users
who posted a message satisfying a criterion in a given time
interval.

14. The computer-implemented method of claim 1,
wherein a feature loop is evaluated periodically at a fixed time
interval.

15. The computer-implemented method of claim 1,
wherein a result of a feature loop is stored as a counter in a
distributed memory cache and evaluating the feature loop
comprises periodically:

retrieving a value of the counter from the distributed

memory cache;

re-evaluating a feature expression associated with the fea-

ture loop based on a previous time interval; and
updating the counter based on a value of the feature expres-
sion based on the previous time interval.

16. The computer-implemented method of claim 1,
wherein the online system further maintains a set of policies,
a policy comprising a precondition represented as a feature
loop and a policy action, wherein the policy action is executed
if the precondition is satisfied.

17. The computer-implemented method of claim 1, further
comprising:

receiving information describing one or more actions per-

formed by users of the online system, each action asso-
ciated with an entity represented in the online system;
and

10

15

20

25

30

35

14
responsive to receiving information describing each
action:
evaluating each feature loop from the set of feature
loops,

determining whether a precondition of a policy from the
set of policies is satisfied based on a feature loop of the
precondition, and

responsive to the precondition of the policy being satis-
fied, executing the corresponding policy action.

18. The computer-implemented method of claim 1,
wherein evaluating a feature loop comprises aggregating val-
ues accessed from a data warehouse built using the data of the
online system.

19. A non-transitory computer readable storage medium
storing instructions for:

maintaining, in an online system, a set of feature loops,

wherein a feature loop comprises an expression capable
of being processed by a computer processor to map a set
of input values to an output value, the expression evalu-
ating to a value describing one or more entities in the
online system, wherein evaluating the feature loop com-
prises aggregating values of the expression across a plu-
rality of user actions;

receiving information describing a modification to the set

of feature loops, wherein the modification to the set of
feature loops is performed while the online system is
executing;

responsive to the set of feature loops being modified, evalu-

ating feature loops of the set of modified feature loops
for a subsequent user action; and

responding to the subsequent user action based on the

values of feature loops from the set of modified feature
loops.

20. The non-transitory computer readable storage medium
of claim 19, wherein the modification to the set of feature
loops comprises one or more of: addition of a new feature
loop, deletion of an existing feature loop, or update of an
existing feature loop.



